Berrycoombe Primary School Calculation Policy

This Policy was developed on: June 2018
by Lucinda Jerome-Snell
This Policy will be reviewed on: February 2021
Reviewed: February 2021

Calculation Policy

This policy is intended to demonstrate how we teach different forms of calculation at Berrycoombe Primary School. It is organised by year group and covers calculation method progression from EYFS through to Year 6. This policy is designed to help teachers and staff members at the school ensure that calculation is taught consistently across the school and that representation is consistent and progressive from EYFS to Year 6. This policy is also designed to help parents, carers and other family members to support children's learning by letting them know the expectations for their child's year group and by providing an explanation of the methods used at Berrycoombe Primary School.

Agreed Visual Maths Symbols to be used from FYFS through to Year 6

These are the symbols consistently used from EYFS through to Year 6 when the children are engaging with the Draw It element of calculation progression.

100,000	10,000	1,000	100	10	1	0.1	0.01
	N					\square	\bigcirc

Year R

Add two single digit numbers, counting on to find the answer.

Statutory Requirements

\checkmark Children count reliably with numbers from 1 to 20, place them in order and say which number is one more than a given number.
\checkmark Using quantities and objects, they add two single-digit numbers and count on to find the answer.

What I need to know already

- Order numbers to 20 accurately
- Count accurately from 0 to 21
- Count up to 20 objects accurately and attribute the correct numeral to label the set

Key Resources

Numicon, Bead Strings, Dienes, Counters, Ten Frames, Part/Part/Whole Model, Bar Model

Build it

Draw it

Write it

Any abstract form would most likely be jottings alongside a practical activity.

I had 4 apples. I bought 2 more. How many do I have altogether?
$4+2=6$

Discuss it

Addítion is to joiln two or more numbers together to make a total.

Add, more, plus, and, make, altogether, total, equal to, equals, the same as, double, most, count on, number line.

Year 1

Build it

Draw it

Add one-digit and two-digit numbers to 20, including zero

Statutory Requirements

\checkmark Read, write and interpret mathematical statements involving + and $=$ signs and relate this to balance sums and scales
\checkmark Represent and use number bonds and related subtraction facts within 20
Add 1-digit and 2-digit numbers to 20, including zero
\checkmark Solve one -step problems that involve addition, using concrete objects and pictorial representations.

What I need to know alread

- Order numbers to 20 accurately
- Count accurately from 0 to 21
- Count up to 20 objects accurately and attribute the correct numeral to label the set
- Subsidise small groups of objects
- Understand the 'cardinal' value of a set/ array. (Once it has been counted they understand that they don't need to count again.)

Key Resources

Numicon, Bead Strings, Dienes, Counters, Ten Frames, Part/Part/Whole Model, Bar Model

Using a

Write it

Tips: Start with the larger number and count on

Discuss it

Addition is to join two or more numbers together to make a total.

Add, more, plus, and, make, altogether, total, equal to, equals, the same as, double, most, count on, number line.

Year 2

Build it

Draw it

Add a 2-digit number and ones Add a 2-digit number and tens

Statutory Requirements

Solve problems with addition using concrete objects and pictorial representations, including those involving numbers, quantities and measures, and applying their increasing knowledge of mental and written methods
\checkmark Recall and use addition facts to 20 fluently, and derive and use related facts up to 100
Add numbers using concrete objects, pictorial representations and mentally, including:

- a two-digit number and ones
\checkmark - a two-digit number and tens
\checkmark - two two-digit numbers
< - adding three one-digit numbers
\checkmark Show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot
Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems

 16
 $+7$
 27
 $+30$

Write it

Tips: Use empty number lines, concrete equipment, hundred squares etc. to build confidence and fluency in mental addition skills.

Agreed visual maths symbols

Discuss it

Addition is to join two or more numbers together to make a total.

Add, more, plus, and, make, altogether, total, equal to, equals, the same as, double, most, count on, number line, sum, tens, ones, partition, addition, column, tens boundary

Year 2

Add two 2-digit numbers Add three 1-digit numbers

What I need to know already
Understand the value of digits in two-digit numbers
Interpret a mathematical statement involving the symbols + and $=$ or and $=$
Add one- and two-digit numbers to 20, including 0

Key Resources

Numicon, Bead Strings, Dienes, Counters, Ten Frames, Part/Part/Whole Model, Bar Model

Build it

Draw it

Write it

Tips: Choose numbers that don't go over the tens barrier until secure

Agreed visual maths symbols

Discuss it

Addition is to join two or more numbers together to make a total.

Add, more, plus, and, make, altogether, total, equal to, equals, the same as, double, most, count on, number line.

Year 3

Add numbers with 3 digits e.g 236+73

Statutory Requirements

\checkmark Add numbers mentally including:

- a 3-digit number and ones
- a 3-digit number and tens
- a 3-digit number and hundreds
- a 3-digit number and thousands
\checkmark Add numbers with up to three digits, using formal written methods of columnar addition
\checkmark Estimate the answer to a calculation and use inverse operations to check answers \checkmark Solve problems, including missing number problems, using number facts, place value, and more complex addition.

What I need to know already

- Know that addition and subtraction are inverse operations
- Recall addition facts to 20
- Derive addition facts to 100
- Add two-digit numbers and ones (or tens) mentally

Key Resources

Dienes, Bar Model, Visual Maths Symbols, Place Value Chart, Place Value Counters

Build it

1) Set the Dienes blocks up in the correct columns
2) Start with the ones

Write it

Tips: Focus on starting with the ones

Tips: Secure and confident children can move to this method

Draw it

Agreed visual maths symbols

Discuss it

Addition is to join two or more numbers together to make a total.

Add, more, plus, and, make, altogether, total, equal to, count on, number line, sum, tens, ones, partition, addition, column, tens boundary, hundreds boundary, increase, vertical, carry, expanded, compact

Year 4

Add numbers with 4 digits

Statutory Requirements

Add numbers with up to 4 digits using the formal written methods of columnar addition
Estimate and use inverse operations to check answers to a calculation.
Solve addition two-step problems in contexts, deciding which operations and methods to use and why

What I need to know already

- Find 100 more than a given number
- Use column addition for numbers up to three digits

Key Resources

Dienes, Bar Model, Visual Maths Symbols, Place Value Chart, Place Value Counters

Build it

1) Set the PV counters up in the correct columns
2) Start with the ones

Write it

Column Method

Tips: Focus on why we start with the ones and carrying

Draw it

Agreed visual maths symbols

Discuss it

Addition is to join two or more numbers together to make a total.

Add, more, plus, and, make, altogether, total, equal to, count on, number line, sum, tens, ones, partition, addition, column, tens boundary, hundreds boundary, increase, vertical, carry, expanded, compact thousands, hundref,
digits, inverse

Year 5

Add numbers with more than 4 digits.
Add decimals with 2 decimal places, including money.

Statutory Requirements

add whole numbers with more than 4 digits, including using formal written methods (columnar addition) add numbers mentally with increasingly large numbers use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
solve addition multi-step problems in contexts, deciding which operations and methods to use and why

What I need to know already

- Add numbers mentally, including a three-digit number and ones, tens or hundreds
- Use column addition for numbers up to four digits
Estimate the answer to a calculation

Key Resources

Dienes, Bar Model, Visual Maths Symbols, Place Value Chart, Place Value Counters

Build it

Write it

Column Method

Tips: Zeros added to support place value. Line decimal point up

Agreed visual maths symbols

Discuss it

Addition is to join two or more numbers together to make a total.

Add, more, plus, and, make, altogether, total, equal to, count on, number line, sum, tens, ones, partition, addition, column, tens boundary, hundreds boundary, increase, vertical, carry, expanded, compact thousands, hundreds, digits, inverse

Year 6

Build it

1) Set the PV counters up in the correct columns
2) Start with the thousandths

Write it

Column Method

Tips: Zeros added to support place value. Line decimal point up

Agreed visual maths symbols

Discuss it

Addition is to join two or more numbers together to make a total.

Add, more, plus, and, make,
altogether, total, equal to, count on, sum, tens, ones, partition, addition, column, tens boundary, hundreds boundary, increase, vertical, carry, expanded, compact thousands, hundreds, digits, inverse decimal place, decimal point, tenths, hundredths, thousandths, integer

Year R

Using quantities and objects, subtract two single-digit numbers and count back to find the answer

Statutory Requirements

\checkmark Say which number is one more or one less than a given number.
\checkmark Using quantities and objects, they subtract two single-digit numbers and count back to find the answer.

What I need to know already

- Order numbers to 20 accurately
- Count accurately from 0 to 21
- Count up to 20 objects accurately and attribute the correct numeral to label the set

Key Resources

Numicon, Bead Strings, Dienes, Counters, Ten Frames, Part/Part/Whole Model, Bar Model

Build it
 Draw it

Write it

I had 7 apples. I ate 4. How many do I have left over?

Any abstract form would most likely be jottings alongside a practical activity.

Crossing out images to understand 'take away'

Discuss it

Subtraction is taking one number away from another.

Equal to, take, take away, less, minus, subtract, leaves, distance between, difference between, how many more, how many fewer/less than, most, least, count back, how many left, how much less is_?

Year 1

Subtract one-digit and twodigit numbers to 20, including zero

Statutory Requirements

Read, write and interpret mathematical statements involving subtraction (-) and equals (=) signs
Represent and use number bonds and related subtraction facts within 20 Subtract one-digit and two-digit numbers to 20 , including zero
Solve one-step problems that involve subtraction, using concrete objects and pictorial representations, and missing number problems such as $9=0-7$

What I need to know already

Order numbers to 20 accurately
Count accurately from 0 to 21
Count up to 20 objects accurately and attribute the correct numeral to label the set
Subsidise small groups of objects Understand the 'cardinal' value of a set/ array

Key Resources

Numicon, Bead Strings, Dienes, Counters, Ten Frames, Part/Part/Whole Model, Bar Model

Build it

Write it

Tips: Start at the larger number and count back in ones

Draw it

Bar Model

Part Part Whole

Discuss it

Subtraction is taking one number away from another.

Equal to, take, take away, less, minus, subtract, leaves, distance between, difference between, how many more, how many fewer/less than, most, least, count back, how many left, how much less is_?

Year 2

Subtract a two-digit number and ones
Subtract a two-digit number and tens

Statutory Requirements

\checkmark Solve problems with subtraction: using concrete objects and pictorial representations, including those
involving numbers, quantities and measures
Applying their increasing knowledge of mental and written methods
\checkmark Recall and use subtraction facts to 20 fluently, and derive and use related facts up to 100
\checkmark Subtract numbers using concrete objects, pictorial representations, and mentally, including:

- a two-digit number and ones
- a two-digit number and tens
- two two-digit numbers
- subtracting three one-digit numbers \checkmark Show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot
Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number

Build it

Write it

Tips: Start at the larger number and count back in ones

Draw it

Bar Model

Part Part Whole

Discuss it

Subtraction is taking one number away from another.

Equal to, take, take away, less, minus, subtract, leaves, distance between, difference between, how many more, how many fewer/less than, most, least, count back, how many left, how much less is?, count on, strategy, partition, tens, ones

Year 2

Build it

Draw it

Subtract two 2-digit numbers

What I need to know already

Understand the value of digits in twodigit numbers
Interpret a mathematical statement
involving the symbols + and $=$ or - and $=$

Subtract one- and two-digit numbers to 20, including 0

Key Resources

Numicon, Bead Strings, Dienes, Counters, Ten Frames, Part/Part/Whole Model, Bar Model

Write it

Tips: Start at the larger number and count back in ones

Bar Model

Part Part Whole

Discuss it

Subtraction is taking one number away from another.

Equal to, take, take away, less, minus, subtract, leaves, distance between, difference between, how many more, how many fewer/less than, most, least, count back, how many left, how much less is?, count on, strategy, partition, tens, ones

Year 3

Subtract numbers with 3 digits

Statutory Requirements

Subtract numbers mentally, including:

- a three-digit number and ones
-a three-digit number and tens
- a three-digit number and hundreds a three-digit number and thousands Subtract numbers with up to three digits, using formal written methods of columnar subtraction
Estimate the answer to a calculation and use inverse operations to check answers
Solve problems, including missing number problems, using number facts, place value, and more complex subtraction

What I need to know already

Know that addition and subtraction are inverse operations
Recall subtraction facts to 20
Derive subtraction facts to 100
Subtract two-digit numbers and ones (or tens) mentally

Key Resources

Dienes, Bar Model, Visual Maths Symbols, Place Value Chart, Place Value Counters

238-146

1)Set the

Dienes up in
correct
columns.

Tips: Attempt this partitioning method when secure with a number line. Start with numbers where no exchanging is required

Draw it

Bar Model

Pictorial
representation

Discuss it

Subtraction is taking one number away from another.

Equal to, take, take away, less, minus, subtract, leaves, distance between, difference between, how many more, how many fewer/less than, most, least, count back, how many left, how much less is_?, count on, strategy, partition, tens, ones, exchange, decrease, hundreds, value, digit

Year 4

Subtract numbers with 4 digits

Statutory Requirements

Subtract with up to 4 digits using the formal written methods of columnar subtraction where appropriate
Estimate and use inverse operations to check answers to a calculation
Solve subtraction two-step problems in contexts, deciding which operations and methods to use and why.

What I need to know already

Find 100 less than a given number Use column subtraction for numbers up to three digits

Key Resources

Dienes, Bar Model, Visual Maths Symbols, Place Value Chart, Place Value Counters

Build it

Write it

Tips: Move from the partitioning method to the compact method when secure

2754-1562

3) Exchange where necessary

2) Start by removing the ones
1)Set the PV counters up in correct columns.

Draw it

2754-1562

Subtract 5 hundreds

Discuss it

Subtraction is taking one number away from another.

Equal to, take, take away, less, minus, subtract, leaves, distance between, difference between, how many more, how many fewer/less than, most, least, count back, how many left, how much less is_?, count on, strategy, partition, tens, ones, exchange, decrease, hundreds, value, digit, inverse

Year 5

Subtract numbers with more than 4 digits

Statutory Requirements

Subtract whole numbers with more than 4 digits, including using formal written methods (columnar subtraction)
Subtract numbers mentally with increasingly large numbers Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
Solve subtraction multi-step problems in contexts, deciding which operations and methods to use and why.

What I need to know already

Subtract numbers mentally, including a three-digit number and ones, tens or hundreds
Use column subtraction for numbers up to four digits
Estimate the answer to a calculation

Key Resources

Dienes, Bar Model, Visual Maths Symbols, Place Value Chart, Place Value Counters

31056-2128

1) Set the

PV counters
up in
correct
columns
2) Start by
removing
the ones 3) Exchange where
necessary

Write it

Tips: Using 0's as place value holders
Practice exchanging multiple times

Draw it

31056-2128

Subtract 2 thousands

Subtract 2 tens

Subtract 1 hundred

Discuss it

Subtraction is taking one number away from another.

Equal to, take, take away, less, minus, subtract, leaves, distance between, difference between, how many more, how many fewer/less than, most, least, count back, how many left, how much less is_?, count on, strategy, partition, tens, ones, exchange, decrease, hundreds, value, digit, inverse, tenths, hundredths, decimal place, decimal.

Year 6

Build it

Draw it

31056-2128

Wh	Th	Th	H	T	0
\bigcirc			990	980	

1) Set the

PV counters 2) Start by
up in removing
correct columns.
3) Exchange
where necessary

Write it

Tips: Multiple times of exchanging and increasingly larger decimals.

150,699

- 89,949

Discuss it

Subtraction is taking one number away from another.

Equal to, take, take away, less, minus, subtract, leaves, distance between, difference between, how many more, how many fewer/less than, most, least, count back, how many left, how much less is_?, count on, strategy, partition, tens, ones, exchange, decrease, hundreds, value, digit, inverse, tenths, hundredths, decimal place, decimal.

Year R

Solve problems, including doubling

Statutory Requirements

Solve problems, including doubling

What I need to know already

Order numbers to 20 accurately Count accurately from 0 to 21
Count up to 20 objects accurately and attribute the correct numeral to label the set

Key Resources

Cubes, Numicon, Bead Strings, Dienes, Counters, Ten Frames, Part/Part/Whole Model, Bar Model

Build it

0010

Demonstrate doubling with Numicon, cubes and a range of concrete objects

Write it

Any abstract form would most likely be jottings alongside a practical activity.

Draw it

Draw pictures to show how to double

Discuss it

Multiplication is mepeatedly adding something together

Groups of, lots of, times, array, altogether, multiply, count, double

Year 1

Build it

Draw it

Solve one-step problems involving multiplication by calculating the answer using concrete objects, pictorial representations and arrays

Statutory Requirements

Solve one-step problems involving multiplication, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.

What I need to know already

Pupils need to be able to read, write and order numbers to at least 20 Subitise small groups of objects (i.e. can say how many there are without needing to count each individual object.)

Key Resources

Cubes, Numicon, Bead Strings, Dienes, Counters, Ten Frames, Part/Part/Whole Model, Bar Model

Tips: Practise making equal groups first

Write it

```
15
5\times3=15
```


Tips: Record multiplication alongside repeated addition

Draw the concrete method

Discuss it

Multiplication is repeatedly adding something together

Groups of, lots of, times, array, altogether, multiply, count, double

Year 2

Calculate mathematical statements and solve problems within the multiplication tables (2,5 \& 10)

Statutory Requirements

\checkmark Recall and use multiplication facts for the 2, 5 and 10 multiplication tables, including recognising odd and even numbers
Calculate mathematical statements for multiplication within the multiplication tables and write them using the multiplication (\times) and equals (=) signs Show that multiplication of two numbers can be done in any order
\checkmark Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication
What I need to know already
Count from zero in 2 s , 5 s and 10 s
Use concrete objects to solve problems involving multiplication
Use pictorial representations to solve problems involving multiplication Use arrays to solve problems involving multiplication.

Key Resources

Cubes, Numicon, Bead Strings, Dienes, Counters, Ten Frames, Part/Part/Whole Mo oobies ar Model

Build it

Arrays

: : $:$

Tips: Use counters or cubes to arrange in groups of rows and columns

Write it

Tips: Understand that multiplication is commutative

Draw it

Draw the array

Discuss it

Multiplication is repeatedly adding something together

Groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, column, row, commutative, sets of, equal groups, times as big as, once, twice, three times

Year 3

Multiply 2-digits by a single digit number

Statutory Requirements

Recall and use multiplication facts for the 3, 4 and 8 multiplication tables \checkmark Write and calculate mathematical statements for multiplication using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods Solve problems involving missing number problems involving multiplication including positive number scaling problems and correspondence problems where n objects are connected to m objects

What I need to know already

- Recall multiplication facts for 2, 5 and 10 multiplication tables
- Understand that multiplication and division are inverse operations
Understand that multiplication is commutative

Key Resources

Cubes, Dienes, Bar Model, Numicon, Visual Maths Symbols, Place Value Chart, Place Value Counters

Build it
 Draw it

Build array, with counters
Build with dienes
\downarrow
Build with PV Counters

Write it

Tip: Encourage column addition to add accurately

Agreed visual maths symbols

Discuss it

Multiplication is repeatedly adding something together

Commutative, sets of, equal groups, times as big as, once, twice, three times, partition, grid method, multiple, product, tens, ones, value

Year 4

Build it

Draw it

multiplication tables up to 12×12 Use place value, known and derived facts to multiply mentally, including: x0 x1 and multiplying together three numbers Recognise and use factor pairs and commutativity in mental calculations
Multiply two -digit and three -digit numbers by a one -digit number using formal written layout
Solve problems involving multiplying, including the distributive law to multiply two - digit numbers by one digit including positive number scaling problems and correspondence problems where n objects are connected to m objects.

What I need to know already

- Recall multiplication facts for 2, 3, 4, 5, 8 and 10 multiplication tables
Understand that multiplication and division are inverse operations

Key Resources

Cubes, Dienes, Bar Model, Numicon, Visual Maths Symbols, Place Value Chart, Place Value Counters

Build with PV counters

Write it

Tip: Move on to short multiplication when child is confident and accurate

Agreed visual maths symbols

Discuss it

Multiplication is repeatedly adding something together

Commutative, sets of, equal groups, times as big as, once, twice, three times, partition, grid method, multiple, product, tens, ones, value, inverse

Year 5

Multiply numbers up to / more than 4 digits

Statutory Requirements

\checkmark Identify multiples and factors: all factor pairs of a number, common factors of two numbers, establish whether a number up to 100 is prime and recall prime numbers up to 19 .
Multiply numbers up to four digits by a one or two -digit number using a formal written method.
'Multiply whole numbers and those involving decimals by 10, 100 and 1000.

What I need to know already

Recall multiplication facts for
multiplication tables up to 12×12
Find factor pairs of a given number Understand the commutativity of
multiplication
Multiply a two-digit number by 10,100 Multiply a three-digit number by a onedigit number using short multiplication

Key Resources

Cubes, Dienes, Bar Model, Numicon, Visual Maths Symbols, Place Value Chart, Place Value Counters

Build it

Represent column multiplication with PV counters

Write it

Tip: Become skilled at short multiplication before moving to long multiplication

Draw it

Discuss it

Multiplication is repeatedly adding something together

Commutative, sets of, equal groups, times as big as, once, twice, three times, partition, grid method, multiple, product, tens, ones, value, inverse

Year 6

Multiply numbers with more than 4 digits with decimals

Statutory Requirements

Identify multi-digit numbers up to 4 digits by a two-digit number using formal, long multiplication
Identify common factors, common multiples and common prime numbers. Use their knowledge of the order of operations to carry out calculations involving the four operations.

What I need to know already

Recall multiplication facts for multiplication tables up to 12×12 Understand the commutativity of multiplication and addition
Multiply a three-digit number by a twodigit number using long multiplication

Key Resources

Cubes, Dienes, Bar Model, Visual Maths Symbols, Place Value Chart, Place Value Counters, Numicon

Build it

Represent column multiplication with PV counters

Write it

Tip: Ensure decimal point is in line with carefully written values either side

Draw it

Agreed visual maths symbols

Discuss it

Multiplication is repeatedly adding something together

Groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, column, row, commutative, sets of, equal groups, times as big as, once, twice, three times, partition, grid method, multiple, product, tens, ones, value, inverse, square, factor, integer, decimal, short/long multiplication, carry, tenths, hundredths, decimals

Year R

Solve problems，including halving and sharing

Statutory Requirements

\checkmark Solve problems，including halving and sharing

What I need to know already

Order numbers to 20 accurately Count accurately from 0 to 21
Count up to 20 objects accurately and attribute the correct numeral to label the set

Key Resources

Cubes，Numicon，Bead Strings，Dienes， Counters，Ten Frames，Part／Part／Whole Model，Bar Model

Build it

Start by practically halving objects with both halves being exactly the same．

Move to practical objects
Tip：Focus on
making number stories

Write it

Any abstract form would most likely be jottings alongside a practical activity．

Draw it

（1ロロロロ回日ロッ円

Pictorial representation with a range of pictures

Discuss it

Division is sharing or grouping a number into equal parts．

Halving is smaller／Doubling is larger， 2 Equal parts，Share， share equally

Year 1

Solve one-step problems involving division by calculating the answer using concrete objects, pictorial representations and arrays

Statutory Requirements

Solve one-step problems involving division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.

What I need to know already

- Pupils need to be able to read, write and order numbers to at least 20 - Subitise small groups of objects (i.e. can say how many there are without needing to count each individual object.

Key Resources

Cubes, Numicon, Bead Strings, Dienes, Counters, Ten Frames, Part/Part/Whole Model, Bar Model

Build it

Write it

Sharing

[^0]
Draw it

Sharing

Pictorial representation with a range of pictures

Discuss it

Division is sharing or grouping a number into equal parts.

Share, share equally, one each, two each..., group, groups of, lots of, array

Year 2

Calculate mathematical statements and solve problems for division within the multiplication tables (2, $5 \&$ 10)

Statutory Requirements

Recall and use multiplication and division facts for the 2, 5 and 10 multiplication tables
Recognising odd and even numbers Calculate mathematical statements for division within the multiplication tables and write them using the signs \div and $=$ Show that multiplication of two numbers is commutative but division is not
Solve problems involving division using materials, arrays, repeated addition, mental methods and division facts, including problems in contexts.

What I need to know already

Count from zero in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s
Use concrete objects to solve problems involving division
Use pictorial representations to solve problems involving division
Use arrays to solve problems involving division

Key Resources

Cubes, Numicon, Bead Strings, Dienes, Counters, Ten Frames, Part/Part/Whole Model, Bar Model

Build it

Know and understand
sharing AND grouping

Panamanere Sharing

Grouping

- Cla

Tip: Link division to multiplication by creating an array. Create all number sentences

Write it

Sharing

Grouping
There are 10 groups of 2 in 20

Draw it

Sharing

Discuss it

Division is sharing or

 grouping a number into equal parts.Share, share equally, one each, two each..., group, groups of, lots of, array

```
20\div2=10
```


Year 3

Divide 2-digit numbers by a single digit (where there is no remainder in the final answer)

Statutory Requirements

Recall and use multiplication and division facts for the 3, 4 and $8 \times$ tables. Write and calculate mathematical statements for division using the multiplication tables they know, including 2digit divided by 1-digit using mental and progressing to formal written methods Solve problems, involving missing number problems, division, including positive number scaling problems and
correspondence problems where n objects are connected to m objects.

What I need to know already

Recall division facts for 2, 5 and 10 multiplication tables
Understand that multiplication and division are inverse operations

Key Resources

Cubes, Numicon, Bead Strings, Dienes, Counters, Ten Frames, Part/Part/Whole Model, Bar Model

Build it

We want to make groups of 3 starting with the tens

Write it

Short Division Bus Stop Method

Move to a calculation that involves remainders within it.

Draw it

Agreed visual maths symbols

Discuss it

Division is sharing or

 grouping a number into equal parts.Share, share equally, one each, two each..., group, groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over, inverse, short division, carry, remainder, multiple

Year 4

Divide up to 3-digit numbers by a single digit

Statutory Requirements

Recall multiplication and division facts up to 12×12.
\checkmark Use place value, known and derived facts to divide mentally, including dividing by 1 .
\checkmark Solve problems involving dividing a three-digit number by one-digit and number using a formal layout

What I need to know already

- Recall division facts for 2, 3, 4, 5, 8 and 10 multiplication tables Understand that multiplication and division are inverse operations

Key Resources

Cubes, Dienes, Bar Model, Visual Maths Symbols, Place Value Chart, Place Value Counters, Numicon

Build it

Tips: Make exchanges where necessary

Write it

Short Division Bus Stop Method

Draw it

Agreed visual maths symbols

Discuss it

Division is sharing or grouping a number into equal parts.

Share, share equally, one each, two each..., group, groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over, inverse, short division, carry, remainder, multiple, divisible factor

Year 5

Divide at least 4 digits by single-digit numbers

Statutory Requirements

\checkmark Identify multiples and factors, including: / - finding all factor pairs of a number - common factors of two numbers know and use the vocabulary of prime numbers and establish whether a number up to 100 is prime
Multiply and divide numbers mentally drawing on known facts
Divide numbers up to 4 digits by a onedigit number using a written method and interpret remainders appropriately for the context Divide whole numbers and those involving decimals by 10, 100 and 1000

What I need to know already

Recall division facts for multiplication tables up to 12×12 Divide a two-digit number by 10 , 100

Key Resources

Cubes, Dienes, Bar Model, Visual Maths Symbols, Place Value Chart, Place Value Counters, Numicon

Build it

Tips: Make exchanges where necessary

Write it

Short Division Bus Stop Method

Tips: Show to remainder as a fraction $6635 / 8$ or rounded as appropriate to the problem involved

Draw it

Agreed visual maths symbols

Discuss it

Division is shaming or

 grouping a number into equal parts.Share, share equally, one each, two each, group, groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over, inverse, short division, carry, remainder, multiple, divisible by, factor, quotient, prime number, prime factors, composite number (non-prime)

Year 6

Divide at least 4 digits by single-digit numbers and 2digit numbers

Statutory Requirements

Divide numbers up to 4 digits by a two -digit number using the formal written method of long division Interpret remainders as whole number remainders, fractions, or by rounding as appropriate for the context.
Divide numbers up to 4 digits by a two -digit number using the formal written method of short division as appropriate.

What I need to know already

- Recall division facts for multiplication tables up to 12×12 Use knowledge of multiplication tables when dividing Know how to use short division

Key Resources

Cubes, Dienes, Bar Model, Visual Maths Symbols, Place Value Chart, Place Value Counters, Numicon

Build it

Tips: Make exchanges where necessary

Write it

Short

Division Bus
Stop Method

Draw it

Agreed visual maths symbols

Discuss it

Division is sharing or

 grouping a number into equal parts.Share, share equally, one each, two each, group, groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over, inverse, short division, carry, remainder, multiple, divisible by, factor, quotient, prime number, prime factors, composite number (non-prime)

[^0]: 8 shared between 4

